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Abstract | Congenital hypogonadotropic hypogonadism (CHH) causes pubertal failure and infertility in both 
women and men due to partial or total secretory failure of the two pituitary gonadotropins lutropin (LH) and 
follitropin (FSH) during periods of physiological activation of the gonadotropic axis. Men and women with CHH 
frequently seek treatment for infertility after hypogonadism therapy. Some etiologies, such as autosomal 
dominant or X-linked Kallmann syndrome, raise the question of hereditary transmission, leading to increasing 
demands for genetic counseling and monitoring of medically assisted pregnancies. Diagnosis and treatment of 
newborn boys is, therefore, becoming an increasingly important issue. In male individuals with complete forms 
of CHH, the antenatal and neonatal gonadotropin deficit leads to formation of a micropenis and cryptorchidism, 
which could undermine future sexual and reproductive functions. Standard treatments, usually started after 
the age of puberty, often only partially correct the genital abnormalities and spermatogenesis. The aim of this 
Review is to examine the possible additional benefits of neonatal gonadotropin therapy in male patients with 
CHH. Encouraging results of neonatal therapy, together with a few reports of prepubertal treatment, support the 
use of this novel therapeutic strategy aimed at improving sexual and reproductive functions in adulthood.

Bouvattier, C. et al. Nat. Rev. Endocrinol. advance online publication 18 October 2011; doi:10.1038/nrendo.2011.164

Introduction
The term congenital hypogonadotropic hypogonadism 
(CHH) refers to a group of rare disorders characterized 
by a deficiency in gonadotropin-releasing hormone 
(GnRH), which results in pituitary gonadotropin deficien-
cies that are already present in the fetus and usually persist 
throughout life.1,2 Schematically, three subgroups of CHH 
exist, the largest of which involves isolated gonadotropin 
deficiency and is composed of individuals whose entire 
pheno type is explained exclusively by prenatal and post-
natal gonadotropin and sex-steroid deficiency. The second 
most frequent form is Kallmann syndrome, in which the 
congenital GnRH deficit is usually accompanied by partial 
or complete loss of olfaction and sometimes by other 
neuro logical abnormalities or malformations.3,4 The third 
subgroup consists of heterogeneous ‘syndromic’ forms of 
CHH, in which the gonadotropin deficit is sometimes only 
a marginal feature of a predominantly endocrine, meta-
bolic or neuro logical syndrome.1 However, syndromic 
forms of CHH are sometimes associated with only minor 
clinical disorders and resemble Kallmann syndrome or 
normosmic CHH.1,3–7 Management of patients with CHH 
has gradually improved over the past 30 years thanks to 
progress in hormone assays, imaging, genetics and hor-
monal therapy. The discovery of gene mutations under-
lying these disorders has led to major patho physiologic 
advances and also helped to determine the probable 
modes of genetic transmission: X-linked, autosomal 

dominant, autosomal recessive, or digenic or oligogenic.1–4 
Therapeutic progress has enabled men and women with 
these disorders to envisage having children.8

Treatment of female patients is based on feminization 
and increasing adult height using estrogen–progestin com-
binations and on correction of the trophicity of the internal 
genitalia and uterus. Once feminization is complete, ovu-
lation and pregnancy can be achieved by pulsatile GnRH 
administration or combination therapy with extractive 
or recombinant gonadotropins. In male patients, the 
virilization induced by androgen administration is often 
considered acceptable in nonsevere forms but, as will be 
discussed below, seems very unsatisfactory in those with 
severe forms of CHH with cryptorchidism—the failure of 
one or both testes to move into the scrotum as the male 
fetus develops—and micropenis (2.5 SD below the mean 
of normal for a given age). Furthermore, treatment with 
spermatogenesis-inducing hormones usually fails to 
correct infertility in men with CHH and cryptorchidism. 
Severe congenital gonadotropin deficiency, therefore, leads 
to infertility and unsatisfactory sexuality in adulthood, and 
these issues are becoming increasingly important for male 
teenagers and young men with CHH. 

As potential future parents, patients with CHH are 
also concerned with the risk of transmitting the disorder 
to their children and with the anatomical consequences 
of the disease for their offspring, especially boys. In our 
experi ence, the most pressing questions from parents 
concern their future sons’ pubertal development, sexual-
ity and fertility. The aim of this Review is to discuss the 
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consequences of CHH for the development of the exter-
nal male genitalia and, now that CHH can be diagnosed 
at birth, the possible beneficial effect of early hormone 
therapy on adult status.

Ontogenesis of the gonadotropic axis
Antenatal masculinization of the internal and external 
genitalia depends on adequate production of testo-
sterone by the fetal testicles and on the correct action 
of this androgen on its target organs. During early male 
fetal life, testosterone production by Leydig cells is first 

Key points

 ■ During fetal life, hypothalamic gonadotropin-releasing hormone (GnRH) and 
pituitary gonadotropins play a key part in the development and growth of the 
male external genitalia

 ■ Complete congenital hypogonadotropic hypogonadism (CHH) is associated  
with penile and testicular hypotrophy and, in many cases, with cryptorchidism

 ■ Conventional treatment of patients with CHH, with testosterone or 
gonadotropins, is inadequately effective in terms of adult sexuality and fertility 
when started after the age of puberty

 ■ Neonatal treatment corrects genital hypotrophy and improves testicular 
endocrine function, which might improve the response to treatments intended 
to induce postpubertal virilization and to restore fertility in men with CHH

 ■ Long-term studies are needed to assess the effect of this approach on 
sexuality and fertility before recommending its routine use

detected at week 8 of gestation, reaching its maximum at 
12–14 weeks (Figure 1).9,10 Human fetal testosterone pro-
duction is initially triggered by placental human chorio-
gonadotropin (hCG) stimulation of LH/CG receptors 
expressed on the surface of Leydig cells.11,12 The key role 
of LH/CG receptors during this period of male genital 
development is demonstrated by the absent or defective 
masculinization of external genitalia (feminine pheno-
type or partial disorder of sex development) that is 
due to mutations that cause complete or partial loss of  
LH/CG receptor function, respectively.13

Placental hCG production, as assessed on the basis of 
assays of maternal serum and amniotic fluid, is maximal 
between weeks 8 and 12 of gestation.9,10,14,15 At this stage, 
placental hCG levels in the fetal compartment are adequate 
to stimulate the fetal testicles. Indeed, hCG is detectable in 
fetal blood, albeit at levels lower than in amniotic fluid.9,10,15 
At week 12, when the level of placental hCG in the fetal cir-
culation starts to fall,9,10,15 LH and FSH start to be secreted 
by fetal pituitary gonadotrope cells (Figure 1). This secre-
tion has been demonstrated in humans by the detection of 
pituitary transcripts for both the common α subunit and 
the specific β subunits of these two dimeric gonadotropins 
and by immunoassay of the hormones in fetal blood.9,10,15 It 
was thus shown that the human male fetal pituitary gland 
is capable of producing dimeric LH and FSH.9,10 LH secre-
tion by fetal pituitary gonadotrope cells rises gradually, 
ensuring continued fetal testicular steroidogenesis despite 
the decline in hCG. Thus, initial masculinization of the 
external genitalia (perineum, scrotum, penis) and their 
antenatal growth seem to be initially dependent on fetal 
testicular testosterone secreted first under the control of 
placental hCG and then of pituitary LH.

Terminal inguinoscrotal testicular descent, which 
occurs around weeks 27–35 of fetal life, is also  androgen- 
dependent and seems to be controlled mainly by pituitary 
LH.9,10,16,17 The insulin-like 3 peptide (INSL3), which is 
secreted by fetal Leydig cells, also seems to have an impor-
tant role in fetal testicular migration, alongside testicular 
testosterone.18

The effect of FSH on testicular function during human 
fetal development is poorly documented,10,19 largely 
because of the difficulty of distinguishing, in humans, 
the respective effects of the two pituitary gonadotropins. 
However, binding experiments,20 transcript assays21 and 
immunohistochemical methods22 have shown that the 
human fetal testicle expresses FSH receptors, and fetal 
blood FSH levels increase during the course of the second 
trimester (Figure 1).12 Hence, Sertoli cell proliferation,21 
observed from the second trimester, is possibly linked 
to stimulation of the fetal testicles by pituitary FSH. This 
hypothesis is also supported by the increase in inhibin B 
levels observed in the human male fetus;23 by the known 
stimulatory effect of FSH on testicular growth and Sertoli 
cell proliferation; and by the increase in sertolian peptide 
secretion during the neonatal period (the other period of 
early testicular development; see below).

During the third trimester, circulating levels of the 
two fetal pituitary gonadotropins fall as term approaches 
(Figure 1), probably owing to the appearance of negative 
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Figure 1 | Schematic of the activation of the hypothalamic–pituitary–testicular axis 
during fetal and postnatal life in humans. During fetal, early neonatal and pubertal 
development, a | pulsatile hypothalamic secretion of GnRH stimulates b | pituitary 
gonadotropin biosynthesis and secretion that, in turn, stimulates c | testicular 
steroid and peptidic hormone production. The dotted line represents 
spermatogenesis, which occurs only after puberty. Abbreviations: AMH, anti-
Müllerian hormone; FSH, follitropin; GnRH, gonadotropin-releasing hormone; hCG, 
human choriogonadotropin; IB, inhibin B; LH, lutropin; T, testosterone.

REVIEWS

© 2011 Macmillan Publishers Limited. All rights reserved



NATURE REVIEWS | ENDOCRINOLOGY  ADVANCE ONLINE PUBLICATION | 3

feedback mechanisms24 exerted by placental estradiol and 
progesterone and by inhibin B. This negative feedback 
might be secondary to the appearance of sex-steroid recep-
tors in the fetal pituitary during the second trimester.25,26 
The resulting fall in gonadotropin levels observed towards 
the end of gestation10,23 could explain the reduction in the 
number of Leydig cells during this period, as well as the 
low circulating testosterone concentrations on the day of 
birth (Figure 1) and, thus, the stagnation of fetal Sertoli 
cell proliferation towards the end of gestation.10,21

Hypothalamic GnRH plays a key part in the positive 
control of postpubertal pituitary gonadotropin secretion.27 
This neurohormone and the neurons that secrete it have, 
however, also been the focus of attention during human 
fetal life.28–31 GnRH has been detected in human embryo-
nic brain extracts as early as at 4.5 weeks of gestation.30,31 
GnRH neurons, originating from the olfactory epithe-
lium, have been detected in the fetal hypo thalamus by 
9 weeks of gestation, but functional connections between 
these neurons and the portal system only seem to appear 
at around 16 weeks (Figure 1).30,31 Studies of ovine fetuses 
have shown that pulsatile LH secretion begins as early 
as midgestation and that it can be blocked by chronic 
administration of a GnRH agonist.32–34 This finding sup-
ports the possibility of active antenatal  pulsatile GnRH 
secretion by the human hypothalamus.32

The important role of fetal gonadotrope cell stimulation 
by GnRH in pituitary LH secretion and, subsequently, in 
fetal testicular steroidogenesis and male genital develop-
ment, has also been shown in primates, sheep and rodents 
by using pharmacological approaches. The effects of 
hypo thalamic GnRH on pituitary function were blocked 
by antenatal administration of GnRH analogues, which 
effec tively reduced fetal pituitary gonadotropin secretion, 
appeared to inhibit terminal inguinoscrotal testicular 
migration and led to a reduction in neonatal testicle and 
penis size.33–35

Antenatal gonadotropin deficiency
Studies of natural human disease models have confirmed 
the key role of antenatal GnRH and fetal pituitary gonado-
tropin secretion on male genital development. One such 
model is the fetus with anencephaly and an XY karyo-
type.35–37 These fetuses show inadequate secretion of pitu-
itary hormones, especially gonadotropins, and exhibit 
unambiguous male genital development. It was, thus, 
deduced that initial masculinization of the uro genital 
sinus into the scrotum and penis was independent of 
pituitary gonadotropin secretion. However, these fetuses 
were found to have penile and testicular hypotrophy.35–37 
One hypothesis put forward at that time was that placen-
tal hCG secretion in early gestation was adequate for early 
masculinization of the external genitalia but that, with the 
physiological reduction in hCG concentrations in the fetal 
compartment, subsequent masculinization and growth of 
the external genitalia was unable to continue because the 
physiological rise in LH did not occur. This absence of pitu-
itary gonadotropins would, therefore, com promise penile 
growth and inguinoscrotal testicular migration, which are 
dependent on gonadotropins and androgens.35–37

CHH is a ‘purer’ natural pathological model than the 
anencephalic fetus, which is relatively complex. CHH has 
served as a model to determine the specific role of the 
gonadotrope axis in the development of the testicles and 
external genitalia, because it only affects physiological 
GnRH and/or pituitary gonadotropin secretion during 
fetal life, without having a clinically significant effect on 
other pituitary secretions.1 This model confirms the key 
roles of antenatal hypothalamic GnRH secretion, pituitary 
GnRH receptors and the two pituitary gonado tropins in 
terminal fetal development of the male genitalia. It has 
also served, as discussed below, to specify the role of the 
gonadotropic axis in immediate postnatal testicular acti-
vation and, thus, in the terminal growth of the human 
external genitalia. Indeed, almost all known genetic forms 
of isolated CHH due to deficient hypo thalamic GnRH 
secretion or to pituitary resistance to this neuropeptide 
exhibit the cardinal clinical signs of antenatal pituitary 
gonadotropin deficiency, namely cryptor chidism and 
micropenis (Table 1).38–58 These models have also revealed 
the essential role of two hypothalamic neurohormones 
and their receptors in GnRH secretion and, therefore, in 
gonadotropin secretion during fetal life: kisspeptin and 
its receptor KiSS1R (also known as GPR54) and neuro-
kinin B and its receptor NK3R.48–55 Cryptorchidism and 
micropenis have also been observed in patients with 
Kallmann syndrome56,57,59–82 or more complex syndromic 
forms.83–85 It must, however, be emphasized that not all 
patients with CHH necessarily manifest cryptorchidism 
and micro penis; the frequency of these features varies 
depending on the underlying genetic cause. For instance, 
cryptorchidism has been shown to be more frequent in 
individuals with CHH due to a KAL1 mutation than in 
those with mutations in the FGFR1 (previously known as 
KAL2) gene (Table 1).57

The existence of micropenis in the setting of isolated 
LH deficiency due to a mutation in the gene encoding 
the LH subunit β indicates that this gonadotropin has the 
main role in antenatal penile growth and testicular migra-
tion,86–88 by stimulating INSL3 and testosterone secretion 
from Leydig cells.89,90 However, in addition to LH defi-
ciency, the majority of fetuses with CHH probably have a 
concurrent FSH deficiency.

The specific consequences of the FSH deficit in humans 
are not currently clear, because it is difficult to dissociate 
them from the consequences of the antenatal LH deficit. 
It is possible that the FSH deficiency affects antenatal pro-
liferation of Sertoli cells and, possibly, germ cells.21 This 
hypothesis is in keeping with the marked reduction in 
testicular volume and in circulating inhibin B and anti-
Müllerian hormone (AMH) concentrations observed in 
male neonates with CHH relative to those with a normal 
gonadotrope axis. It is also com patible with the well-
established stimulatory effect of FSH on testicular volume 
and testicular inhibin B secretion at different stages of 
life.19,91,92 Moreover, FSH seems to have an important role 
in establishing normal adult fertility throughout ante-
natal and postnatal life, independently of LH, as shown 
by the reduction in testicular volume and defective 
spermato genesis observed in men with loss-of-function 
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mutations in the genes encoding the FSH subunit β and 
the FSH receptor.93–95

Postnatal gonadotropic axis
As in male fetuses, the first 6 months of life represent 
a period during which the hormonal activity of the 
hypothalamic–pituitary axis and testes is important 
(Figure 1).96–105 This active phase, which is possibly related 
to the interruption of the negative feedback effect of both 
placental sex steroids and peptides on pituitary gonado-
tropin secretion, is reflected physically by an increase in 
testicular volume due to seminiferous tubule elongation98 
and by an increase in penis length.99 During this period, 
pituitary LH and FSH levels rise, leading to an increase 
in circulating levels of testosterone, inhibin B22,100–102 and 
AMH (Figure 1),22,102 which can attain levels observed 
in adult men or even higher. Concomitantly, Sertoli 
cells proliferate and a degree of germ cell development 
occurs.103–105 Interestingly, however, spermatogenesis 
does not occur in male neonates, despite neonatal FSH 
and LH secretion, possibly owing to absent androgen 
signaling in Sertoli cells.22,106

When CHH is suspected in a male neonate, the diag-
nosis can be confirmed by hormone assays before the 
age of 6 months—the only period of childhood during 
which testosterone and gonadotropin deficiencies 
can be demon strated.101,107,108 Given the ‘physiological’ 

gonadotropin deficiency that characterizes childhood 
after the first 6 months of life (Figure 1), the only signs 
of CHH later in childhood are cryptor chidism and 
micropenis, especially if these defects are associated with 
signs pointing to a particular cause of CHH (for instance, 
anosmia or mirror movements).108 However, CHH 
cannot be confirmed by gonadotropin and testosterone 
assays. Men with complete CHH in addition to fetal 
gonadotropin deficiency have absent postnatal activation 
of LH and FSH secretion. Together, these abnormalities 
account for the reduction in Sertoli cell mass, reflected by 
small testicular volume and markedly low serum inhibin 
B  l evels, and for the hypotrophy of the external genitalia 
observed in adulthood (Figure 2).57,82,92,109,110

Risk of inheritability
In nonsyndromic, normosmic forms of CHH, trans-
mission is usually autosomal recessive.1–4,38–55 In this 
genetic context and in the absence of consanguinity, the 
risk of transmission seems to be very small, consider ing 
the probably very low frequency of the mutated alleles 
in the general population. By contrast, when the mode 
of CHH transmission is autosomal dominant, as in the 
case of FGFR1 and CHD7 mutations, the risk is theoreti-
cally 50%, albeit with variable penetrance (Table 1).4–6 A 
similar high-risk situation arises in Kallmann syndrome, 
in which transmission occurs via the X chromosome 

Table 1 | Isolated CHH, Kallmann syndrome and syndromic CHH associated with cryptorchidism and/or micropenis

Gene Transmission Phenotype Cryptorchidism Micropenis References

Normosmic CHH

GNRH1 Autosomal recessive Isolated CHH + + 38,39

GNRHR Autosomal recessive Isolated CHH + + 40–49

KISS1R Autosomal recessive Isolated CHH + + 50–52

TAC3 Autosomal recessive Isolated CHH + + 53–55,58

TACR3 Autosomal recessive Isolated CHH + + 53–55,58

Kallmann syndrome

KAL1 X-linked CHH
Anosmia/hyposmia

++ ++ 59–69

FGFR1 Autosomal dominant CHH
Anosmia/hyposmia

+ + 56,70–75

FGF8 Autosomal recessive,
digenic or oligogenic

CHH
Anosmia/hyposmia

+ + 76,77

PROK2* Autosomal recessive,
digenic or oligogenic

CHH
Anosmia/hyposmia

+ + 78–82

PROKR2* Autosomal recessive,
digenic or oligogenic

CHH
Anosmia/hyposmia

+ + 78–82

WDR11 NR CHH
Anosmia/hyposmia

+ NR 83

NELF NR CHH
Anosmia/hyposmia

+ NR 84

Complex syndromic CHH

CHD7 Autosomal dominant CHARGE or Kallmann + + 5,6

PROP1 Autosomal recessive Combined pituitary 
deficiencies or isolated CHH

+ + 85

*Compared with monoallelic PROK2 or PROKR2 mutations, biallelic PROK2 or PROKR2 mutations are associated with more frequent cryptorchidism and 
micropenis.7,82 Abbreviations: CHARGE, coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities and/or 
hearing loss defect; CHH, congenital hypogonadotropic hypogonadism; NR, not reported; +, lower penetrance; ++, higher penetrance.
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(KAL1 mutations).3–4,59–69 In this situation, family studies 
are crucial and must be routinely proposed in order to 
identify female carriers. CHH diagnosis at birth is becom-
ing more frequent, as infertility treatment of these patients 
is increasingly more effective, and therapeutic manage-
ment of children born with CHH will, therefore, become 
an essential aspect of the overall management of couples 
carrying these mutations. Finally, it must be stressed 
that genetic counseling of patients with CHH is far more 
complex in cases of digenic or oligogenic transmission,2–4,82 
in which the entire set of genetic events responsible for the 
phenotype is rarely known. Ongoing progress in the iden-
tification of genes responsible for CHH should improve 
the management of these infertile patients.

Hormone therapy
Virilization
Virilizing hormone therapy is always indicated for 
adolescents or adults with CHH to avoid the suffering 
caused by pubertal failure. In theory, virilization can be 
achieved either with pulsatile GnRH or with hCG, alone 
or combined with FSH.111–113 In practice, given the costs 
and constraints of treatment with these hormones, most 
physicians prefer to use testosterone, in the form of an 
injectable ester.111–113 The precise protocol depends on 
the age at diagnosis and local practice. Given the lack 
of randomized comparative trials in patients with CHH, 
no single androgen regimen is clearly superior, and 
pediatric and adult endocrinologists must, therefore, 
be cautious when counseling patients or their parents. 
Pediatric endocrinologists, who see these patients at 
a young age, frequently begin treatment with low and 
gradually increasing doses of testosterone.111–113 Their 
main concerns are, on one hand, the risk of premature 
bone maturation, which could compromise growth 
capital and, on the other hand, the risk of precocious 
sexual activity that could affect the patient’s personal and 
familial equilibrium. Adult endocrinologists see patients 
with CHH later in life, when the main complaint is the 
lack of pubertal development. In this case, the therapeu-
tic approach can be more incisive, with higher initial 
androgen doses. Another concern is to ensure that osteo-
porosis, if present, does not persist or worsen.114 These 
two—pediatric and adult—approaches have not been 
compared with respect to long-term quality of life among 

men with CHH, particularly in terms of sexuality and 
relationships. Few published data exist on the efficacy 
of androgen therapy in this specific population,115 and 
studies examining its effect on quality of life and sexual-
ity are lacking, particularly in men with severe CHH, 
micropenis and cryptorchidism (J. Young, unpublished 
work).116 In fact, micropenis in men with CHH currently 
tends to be considered more as a clinical sign, distin-
guishing CHH from constitutional delayed puberty, than 
as a factor predictive of the effect of androgen therapy on 
the quality of sexuality in adulthood. The relationship 
between micropenis and sexual dysfunction in adult life 
is supported by a previous study from our research group, 
in which patients with partial androgen insensitivity syn-
drome (PAIS) were interviewed: the patients regularly 
stated that their severely reduced penis size had a major 
negative effect on their self-confidence when engaging 
in sexual activity with a partner. From late childhood to 
the end of adolescence, a period of active sexual concerns 
in boys, penile length remained below 50 mm in all 15 
patients studied, 14 of whom stated that it impaired their 
initiation of sexual activity.117

Fertility
The infertility of men with CHH is due to absent sperm 
production. Spermatogenesis can only be induced by 
long-term pulsatile GnRH administration via a pump or 
by several subcutaneous or intramuscular gonado tropin 
injections per week.118–142 Several studies conducted over 
the past 30 years have assessed these treatments in men 
with hypogonadotropic hypogonadism (either congenital 
or acquired after birth or puberty).118–142 However, owing to 
the heterogeneity of these studies, the efficacy of these treat-
ments in the specific subpopulation of patients with CHH 
is difficult to analyze. Indeed, most studies included men 
with CHH, men in whom hypo gonadotropic hypo gona-
dism occurred after puberty and men with hypogonado-
tropic hypo gonadism of unknown cause.120–128,143–145 The 
CHH subgroups were often very small. In addition, many 
of the studies that included patients with CHH were 
biased by the exclusion of patients who were likely to have 
a poor treatment response, such as patients with cryptor-
chidism,122,127,133,135,138,140 and patients with severe CHH in 
whom treatment with hCG alone had failed to normalize 
serum testosterone concentrations.119

a cb

Figure 2 | Genital aspect in a young man with Kallmann syndrome, surgically cured cryptorchidism and micropenis  
a | at presentation, when he was aged 18 years, then b | 6 months and c | 16 months after testosterone enanthate 
administration (250 mg every 3 weeks, intramuscularly). Written consent for publication was obtained from the patient.
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Despite these limitations, several factors are evident. 
First, even if low sperm concentration does not always 
preclude fertility in men with CHH,123 the sperm count 
rarely normalizes in these patients (based on WHO 
criteria) despite long-term gonadotropin combina-
tion therapy.123,128,129,141 Second, the rise in sperm count 
occurs far later in men with CHH than in men with hypo-
gonadotropic hypogonadism of postpubertal onset.121,140 
Third, pre-therapeutic testicular volume is an important 
factor in treatment outcome: the smaller the testicular 
volume (which is generally very low in those with com-
plete CHH), the more difficult it is to achieve a testicular 
volume increase, to normalize the sperm count and to 
achieve a pregnancy.123,124,126,128,131,139 Finally, several studies 
of patients with CHH indicate that cryptor chidism is the 
main risk marker of poor prognosis.140,141

In recent studies, emphasis has been placed on the 
effect that initial treatment for CHH has on the later effi-
cacy of treatments for azoospermia in men with CHH, 
as the response to treatments for infertility appears to 
improve with previous exposure of the patient to gonado-
tropins or GnRH.140,141 However, some clinicians consider 
that prior androgen therapy or very late gonado tropin 
therapy are associated with a poorer subsequent treat-
ment response compared with no prior therapy.141 A 
noteworthy fraction of men with documented CHH 
(between 12% and 50% depending on the series) have 
no sperm in their ejaculate despite long-term gonado-
tropin therapy.138,139 As a result, some patients are offered 
more invasive treatments such as testicular sperm extrac-
tion under general anesthesia, with a view to perform 
intracytoplasmic spermatozoid injection (ICSI).146,147 The 
pregnancy rate achieved with gonadotropin combination 
therapy depends on the types of patients treated and on 
the use of additional assisted reproduction methods 
(in vitro fertilization or ICSI), but appears to be below 
30% if patients have CHH.140,141 This low rate contrasts 
with the excellent efficacy of gonado tropin combination 
therapy in postnatal and post pubertal acquired hypo-
gonadotropic hypo gonadism, in which the pregnancy 

rate is nearly 100% in the absence of an additional female 
factor of infertility.140,141 This large difference could be 
explained by the fact that the testes of patients with 
postnatally acquired hypogonadotropic hypogonadism 
have already been ‘primed’ by pituitary gonadotropins 
during fetal life, the neonatal period and puberty, before 
onset of gonadotropin deficiency. Thus, despite the pro-
gress made in recent years, only a minority of men with 
complete CHH are able to have children after receiving 
current hormonal treatments, which is why attention is 
turning to the possible benefits of earlier, prepubertal or 
even neonatal treatment of gonadotropin deficiency.

Prepubertal hormone therapy
Treatment of male patients with CHH before the age 
of puberty was first reported by Raivio et al.148 in 1997 
(Table 2). The investigators studied the effect of recom-
binant human FSH administration for 12 months on 
testis growth in three gonadotropin-deficient boys 
aged 12.8–13.2 years. No increase in serum LH or sex-
steroid concentrations was noted, but serum FSH and 
inhibin B concentrations increased to within the range 
observed in healthy prepubertal boys, and testis volume 
increased in all three cases. Interestingly, a boy with uni-
lateral cryptorchidism had the largest relative increase 
in testis volume.

In 1999, Bouvattier et al.149 treated 37 adolescents 
with hypogonadotropic hypogonadism with gonado-
tropins (hCG and human menopausal gonadotropin), 
with the aim of achieving complete virilization during 
the first 2 years of treatment. They observed normal 
sexual develop ment with a significant increase in tes-
ticular volume and testosterone levels during therapy. 
The investigators pointed out, however, that less satisfac-
tory results were obtained in adolescents with cryptor-
chidism and suggested that gonadotropin combination 
therapy might be more effective than exogenous testo-
sterone therapy during the induction of puberty, thus 
avoiding the psycho logical problems associated with 
atrophic testes.

Table 2 | Neonatal, prepubertal or peripubertal hormonal therapy in boys with hypogonadotropic hypogonadism

References Year n Age at the start 
of treatment

Hormonal 
therapy

Clinical outcome Hormonal outcome

Raivio et al.148 1997 3 12.8–13.2 years rhFSH Increased testicular 
volume

Increased serum inhibin B 
levels

Bouvattier 
et al.149

1999 37 13.0–15.2 years hCG and hMG Increased testicular 
volume

Increased serum testosterone 
levels

Main et al.152 2000 3 4–18 months Testosterone
(suppositories)

Increased penis
length

Increased serum testosterone 
levels

Main et al.151 2002 1 7.9 months rhLH and rhFSH Increased testicular 
volume and penis 
length

Increased serum inhibin B  
and estradiol levels

Raivio et al.150 2007 14 10.4–17.7 years rhFSH then hCG Increased testicular 
volume* 

Increased serum inhibin B 
levels*

Bougnères 
et al.153

2008 2 2–5 months rhLH and
rhFSH 

Increased testicular 
volume and penis 
length

Increased serum testosterone, 
inhibin B and AMH levels

*During rhFSH; further testicular volume and genital development increased during combined rhFSH and hCG treatment. Abbreviations: AMH, serum  
anti-Müllerian hormone; FSH, follitropin; hCG, human choriogonadotropin; hMG, human menopausal gonadotropin; LH, lutropin; rh, recombinant human.
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In 2007, Raivio et al.150 reported long-term results of 
therapy in a retrospective series of 14 children or adoles-
cents with prepubertal-onset hypogonadotropic hypo-
gonadism who were treated with recombinant human 
FSH followed by FSH–hCG combination therapy. They 
found that prepubertal FSH treatment doubled testicu-
lar volume and increased inhibin B levels. Interestingly, 
CHH was associated with a smaller increase in testicular 
volume and inhibin B levels than postnatally acquired 
hypo gonadotropic hypogonadism, further supporting 
the important role of the neonatal increase in gonado-
tropin levels on the testicular response to these hormones 
in later life.

In 2002, Main et al.151 published the first report of a 
patient with CHH and micropenis treated with recom-
binant human LH and FSH during the first year of life 
(Table 2). The researchers treated this patient from age 
7.9 to 13.7 months with recombinant human LH and 
FSH at respective doses of 203 IU and 21.3 IU sub-
cutaneously twice weekly. Penile length increased from 
1.6 cm to 2.4 cm and testicular volume, assessed by 
ultra sonography, increased by 170%. During this well-
tolerated treatment, the investigators also observed an 
increase in LH, FSH and inhibin B levels.

Main and colleagues also reported interesting results 
with testosterone therapy during early infancy in three 
boys with hypogonadotropic hypogonadism (CHH and 
panhypopituitarism), in whom the diagnosis of gonado-
tropin deficiency was established postnatally and who 
showed a lack of penile growth and scrotal involution 
after birth.152 All the boys received testosterone sup-
positories at daily doses ranging between 1 mg and 
5 mg, which led to normal penile and scrotal develop-
ment. However, changes in testicular volume and ser-
tolian hormone levels (inhibin B and AMH levels) were 
not described.

Bougnères et al.153 described an approach aimed at 
re-establishing the physiological postnatal gonado-
tropin peak, the so-called ‘mini-puberty’ (Table 2). They 
described the cases of two neonates, one with congeni-
tal hypopituitarism and the other with isolated CHH, 
in whom these diagnoses were suggested on the basis 
of findings of micropenis and cryptorchidism. The two 
neonates were treated for 6 months with recombinant 
human LH and recombinant human FSH, delivered sub-
cutaneously via a pump. Testicular volume increased from 
0.45 ml and 0.57 ml at birth to 2.10 ml at 7 months, and 
stretched penile length increased from 8 mm to 30 mm 
in one case and from 12 mm to 48 mm in the other case. 
Mean serum LH and FSH levels increased to normal and 
supranormal levels, respectively, whereas mean testo-
sterone levels increased from undetectable to normal, and 
inhibin B and AMH levels also increased to levels normal 
for age. Whereas the doses of FSH and LH administered 
were similar in this report, the increase of serum FSH to 
supraphysiololgic levels could be related to slower meta-
bolic clearance of FSH than of LH, re sulting in a longer 
half-life and accumulation of FSH.91

Alongside these encouraging reports, it should be 
remembered that treatment with hCG or pulsatile GnRH 

has been shown to be effective to treat cryptorchidism 
in many neonates and in boys treated before the age 
of puberty.143,154 This finding could represent a further 
benefit of neonatal treatment of children with CHH, as 
cryptorchidism is a factor of poor prognosis for adult 
fertility as well as a risk factor for testicular malignancy. 
In addition, orchidopexy—surgery to move an undes-
cended testicle into the scrotum—is technically more dif-
ficult (with a greater risk of damage to the testis) when 
the testis is very small. Achievement of an increment in 
testis volume through presurgical gonadotropin therapy 
could also be beneficial for patients due to undergo 
orchidopexy, but the merits of this approach must be 
confirmed in neonates with CHH and cryptorchidism, as 
some publications point to a deleterious effect of isolated 
hCG therapy in boys with cryptorchidism.155 However, 
it is noteworthy that deleterious effects of hCG on germ 
cells in cryptorchid testicles have only been reported in 
boys with idiopathic cryptorchidism (with or without 
primary testicular insufficiency) and not specifically in 
the CHH population.143,144,154,155 The apparent deleteri-
ous effects attributed to testicular stimulation with hCG 
in children with cryptorchidism could, therefore, con-
ceivably be the expression of the underlying testicular 
dis order,156 as reported in patients with Klinefelter syn-
drome, in whom seminiferous tubule degradation with 
apoptosis of germ cells and Sertoli cells occurs when the 
testicles are stimulated by the spontaneous increase in 
concentration of gonadotropins during the course of 
pubertal development.145

Conclusions
Previous publications show that neonatal combined 
gonadotropin therapy in patients with CHH diagnosed 
at birth can have a beneficial effect on testicular endo-
crine function and on genital development. Indeed, nor-
malization of serum testosterone levels in neonates with 
CHH by administration of adequate gonadotropin doses 
(recombinant LH or hCG) results in a marked increase 
in penile length, which can also be obtained by neonatal 
testosterone administration. In addition, the increase in 
inhibin B and AMH levels induced by concurrent FSH 
administration suggests that gonadotropin combination 
therapy might be superior to simple androgen therapy, 
as it stimulates sertolian hormone secretion, Sertoli cell 
proliferation and growth of seminiferous tubules, as indi-
cated by the marked increase in testicular volume. These 
data are reassuring with respect to germ cell survival 
during combined LH/hCG and FSH admini stration. In 
boys with CHH, the dual aims of neonatal treatment with 
the two pituitary gonadotropins would, therefore, be to 
attenuate the psychological effects of testis hypotrophy 
and micropenis in adolescence and to improve sexual-
ity and spermatogenesis in adulthood. It is possible that 
the normalization of penis size in the neonate will lead, 
during subsequent postpubertal virilization with exog-
enous testosterone or hCG, to a normal adult penis size 
and thus avoid the sexual disorders often reported by 
men with CHH and micropenis. In parallel, the increase 
in testicular size induced by LH and FSH, which is 
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linked to the increase in Sertoli cell mass, could improve 
the response to spermatogenesis-inducing treatments 
started during adolescence or adulthood. Neonatal or 
prepubertal correction of cryptorchidism in children 
with CHH might also have an additional beneficial 
effect on induction of spermatogenesis, which is still a 
matter of debate and needs to be studied specifically in 
the CHH population.

Formal proof of the efficacy of neonatal combined 
gonadotropin therapy on the sexuality and fertility of 
men with CHH will require prospective controlled inter-
vention studies lasting some 15–20 years. However, on 
the basis of the indirect evidence available today, it seems 
reasonable to offer this therapeutic option to the parents 
of newborn boys with severe CHH, while carefully 
explaining current uncertainties as to its final effective-
ness and long-term safety. Close clinical monitoring will 
be needed to assess the short-term, medium-term and 
long-term safety of neonatal gonadotropin therapy in 
boys with CHH.

Finally, these data are also a call to arms for clinical, 
animal157 and basic research in this area to determine, in 
a definitive way, if gonadotropin administration dur ing 
the ‘window period’ is beneficial in treating CHH in 
male patients.
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